
Logistics

• Project	1	(Dynamical	Systems)	has	been	turned	in	(Congratulations).

• You	should	have	received	a	email	from	Bianca	with	your	two	review	
assignments	(Check	with	us	immediately	if	you	have	not).

• Reviews	are	due	Friday,	2-17.



Logistics

• Stability	analysis
• Linear	systems:	take	the	eigenvalues	of	the	matrix	defining	the	system.
• Non-linear	systems:	linearize	by	calculating	the	Jacobian…

… then take the eigenvalues.

Those who figured that out despite my inadequate example (linear	only in	the
old slides)	get extra	credit.
No	one will lose	points on the stability analysis in	part 8	of	Project	1.



Genetic	Algorithms
Complex	Adaptive	Systems



Biological	Evolution

• New	species	develop	from	
older	species

• Old	idea	(versions	since	
Anaxamander and	
Empedocles)

• Breeding	of	plants	and	
animals



Biological	Evolution:	Charles	Darwin

Charles	Darwin

Voyage	of	the	Beagle
5	years	starting	in	1831
Darwin	trained	for	priesthood	and	medicine
but	joined	the	Beagle	as	a	naturalist.	



Biological	Evolution:	Charles	Darwin

Charles	Darwin

Was	able	to	observe:
• geological	evidence	of	the	earth’s	age
• fossils	of	large	mammals	in	South	America
• diversity	of	adaptive	living	forms	on	the	Galapagos



Darwinian	Evolution

It	is	interesting	to	contemplate	a	tangled	bank,	clothed	with	many	
plants	of	many	kinds,	with	birds	singing	on	the	bushes,	with	various	
insects	flitting	about,	and	with	worms	crawling	through	the	damp	
earth,	and	to	reflect	that	these	elaborately	constructed	forms,	so	
different	from	each	other,	and	dependent	upon	each	other	in	so	
complex	a	manner,	have	all	been	produced	by	laws	acting	around	us.	
--- Charles	Darwin	

“Nothing	in	Biology	makes	sense,	except	in	the	light	of	evolution.”	
T.	Dobzhansky



Darwinian	Evolution
• Charles	Darwin,	1859,	The	Origin	of	Species	

3	key	requirements:
• Exponential	growth	of	populations
• Struggle	for	existence:	Limited	Capacity	for	any	population
• Variable,	heritable	survival	and	reproduction	



Darwinian	Evolution
• The unity of life: all species have descended from other 

species 
• Builds on Malthus, An Essay on the Principle of Population, 

1798 
• Domestic breeding shows hereditary modification is 

possible 
• Fitness is a characteristic of individuals 
• Natural Selection operates on populations 
• Fitness is defined only for a particular environment 

Environments always change 
• Species form the selective environments of other 

species 



Darwinian	Evolution
Natural	selection	
– is	often	slow,	but	arms	races	result	in	complex,	wonderful,	bizarre	
(and	stupid)	things

– can	lead	to	cooperation	
– (largely)	based	on	the	fitness	of	reproductive	individuals	

•	Natural	selection	is	not	
– learned	behavior	passed	on	
– is	not	goal	directed	beyond	producing	sucessful offspring
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Darwinian	Evolution
Heritability:

• Darwin	did	not	know	a	mechanism	for	this.

Are	offspring	merely	the	average	of	their	parents?
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Darwinian	Evolution

Heritability:

• Darwin	did	not	know	a	mechanism	for	this.

Are	offspring	merely	the	average	of	their	parents?

Gregor	Mendel
Austrian	Monk	and	Botinist



Mendalian
Genetics

Heritability	is:

Discrete!

Not	just	an	averaging.

Probabilistic	but
Well	defined	and	predictable.

Gregor	Mendel
Austrian	Monk	and	Botinist



Genetics

Still	no	mechanism.

Gregor	Mendel
Austrian	Monk	and	Botinist



Genetics
DNA

Friedrich	Miescher
Swiss	Physician1869	Isolated	a	new	protein	from	

the	nucleus	of	cells.

Thought	it	was	related	to	heredity	but	too
simple



Genetics

DNA.
Crystalography

Rosalind	Frankin,	Cambridge
Invented	the	technique



Genetics

DNA.
Crystalography

James	Watson	&	Francis	Crick
Interpreted	the	results

Rosalind	Frankin
Invented	the	technique

Spiral
Structure



DNA	– Information	Storage

Direct Imaging of DNA Fibers: The Visage of Double Helix, Nanoletters, 2012
Francesco Gentile†, Manola Moretti†, Tania Limongi†§, Andrea Falqui, Giovanni 
Bertoni, Alice Scarpellini⊥, Stefania Santoriello†, Luca Maragliano§, Remo 
Proietti Zaccaria†, and Enzo di Fabrizio

Human: 2.9 billion base pairs =	725	MB	data



Mutation

Yoandri Hernandez Garrido, 37

Polydactyly,	24	digits,
Gene	GLI3,	“Sonic	Hedgehog”	pathway



Mutation



DNA	– Information	Storage

• Great!	Now	how	do	we	use	these
• principles	to	solve	problems?

• Code	it	up…

We need to define:

Population size: N

Genome: G 2 ~R
Population: P 2 Matrix of size N ⇥ |G| with entries 2 R
Mutation operator M: ~R ! ~R
Selection Operator S: PN⇥|G|(R) ! PN⇥|G|(R)
Fitness function: F: ~R ! R



% Simple GA that tries to find the maximum value
% of a 1D Function F. 
% Example: GA(10, 0.5, 10, @(X) sin(X).*X.^2, 2.2);
function GA(pop_size, mutation_rate, num_generations, F, 
animation_delay)

genome_min = -15; genome_max = 30;
genome_space = linspace(genome_min,genome_max);

% Keep some statistics about the evolution
mean_fitness_over_time = [];
max_fitness_over_time = [];
min_fitness_over_time = [];

population = repmat(GAIndividual, 1, pop_size);

plot(genome_space, F(genome_space));
xlabel('Genome', 'Fontsize', 20);
ylabel('Fitness', 'Fontsize', 20);

hold on
for i = 1:pop_size

population(i).fitness = 0;
population(i).genome = rand()*(genome_max-

genome_min)+genome_min;

p(i) = plot(population(i).genome,population(i).fitness,
'o','LineWidth', 10, 'MarkerSize', 20);
end
hold off

for generation = 1:num_generations

% Mutate population
for i = 1:pop_size

candidate = population(i).genome + normrnd(0,mutation_rate);
if candidate < genome_max && candidate > genome_min

population(i).genome = candidate;
end

end

% Animation
for i = 1:pop_size 

p(i).XData = population(i).genome;
p(i).YData = population(i).fitness;

end
pause(animation_delay);
drawnow

% Evaluate fitness
for i = 1:pop_size

population(i).fitness = F(population(i).genome);
end

% update evolution stats
mean_fitness_over_time = [mean_fitness_over_time,mean([population.fitness])];
max_fitness_over_time = [max_fitness_over_time, max([population.fitness])];
min_fitness_over_time = [min_fitness_over_time, min([population.fitness])];

% Sort population by fitness (lowest to highest)
[~,sorted_indicies]=sort([population.fitness]);
population=population(sorted_indicies);

% Replace bottom half of population with random individuals from the top
% half
cutoff = ceil(pop_size/2); % ceiling in case the population size is odd
for i = 1:cutoff

population(i) = copy(population(cutoff+randi(cutoff)));
end

end

classdef GAIndividual
properties

genome;
fitness;

end

methods
% Make a deep copy of this object
function new = copy(this)

% Instantiate new object of the same class.
new = feval(class(this));

% Copy all non-hidden properties.
p = properties(this);
for i = 1:length(p)

new.(p{i}) = this.(p{i});
end

end
end

end



GA(10,	0.05,	10,	@(X)	-X.^2,	0.2);
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GA(10,	0.5,	10,	@(X)	sin(X).*X.^2,	2.2);
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function GA(pop_size, mutation_rate, num_generations, F, animation_delay)

genome_min = -25; genome_max = 25;
genome_min = -25; genome_max = 25;
[genome_space_x, genome_space_y] = meshgrid(genome_min:0.2:genome_max);

% Keep some statistics about the evolution
mean_fitness_over_time = [];
max_fitness_over_time = [];
min_fitness_over_time = [];

surf(genome_space_x, genome_space_y, F(genome_space_x, genome_space_y));

population = repmat(GAIndividual, 1, pop_size);

hold on
for i = 1:pop_size

population(i).genome = rand(1,2)*(genome_max-genome_min)+genome_min;
population(i).fitness = F(population(i).genome(1), 

population(i).genome(2));

% For animation
p(i) = plot3(population(i).genome(1), population(i).genome(2), 

0,'o','LineWidth', 10, 'MarkerSize', 20);
end
hold off

for generation = 1:num_generations
% Mutate population
for i = 1:pop_size

candidate_x = population(i).genome(1) + normrnd(0,mutation_rate);
candidate_y = population(i).genome(2) + normrnd(0,mutation_rate);

if candidate_x < genome_max && candidate_x > genome_min
population(i).genome(1) = candidate_x;

end

if candidate_y < genome_max && candidate_y > genome_min
population(i).genome(2) = candidate_y;

end
end

% Animation 
for i = 1:pop_size 

p(i).XData = population(i).genome(1);
p(i).YData = population(i).genome(2);
p(i).ZData = population(i).fitness;

end
pause(animation_delay);
drawnow

% Evaluate fitness
for i = 1:pop_size

population(i).fitness = F(population(i).genome(1), 
population(i).genome(2));

end

% update evolution stats
mean_fitness_over_time = [mean_fitness_over_time, mean([population.fitness])];
max_fitness_over_time = [max_fitness_over_time, max([population.fitness])];
min_fitness_over_time = [min_fitness_over_time, min([population.fitness])];

% Sort population by fitness (lowest to highest)
[~,sorted_indicies]=sort([population.fitness]);
population=population(sorted_indicies);

% Replace bottom half of population random individuals from the top
% half
cutoff = ceil(pop_size/2); % floor in case the population size is odd
for i = 1:cutoff

population(i) = copy(population(cutoff+randi(cutoff)));
end

end

figure
hold on
plot(1:generation, mean_fitness_over_time, 'r-');
plot(1:generation, max_fitness_over_time, 'b-');
plot(1:generation, min_fitness_over_time, 'g-');
hold off

End



GA(10,	0.5,	10,	@(X)	sin(X).*X.^2,	2.2);
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GA(10,	0.5,	10,	@ackley, 0.2);



GA(100, 0.5, 100, @ackley, 0.2);
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Curse	of	Dimensionality

We	can	place	individuals	in	a	1D	search	space	so	that	the	whole	
region	trivially	well	covered.

But	when	more	dimensions	are	added	an	exponential	increase	
in	population	size	is	required.	We	have	to	get	better	at	evolving	solutions	in	
high-dimensional	spaces.



Genetic	Recombination

1. Sound	off	along	the	rows	(write	down	your	number).	
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Genetic	Recombination

1. Sound	off	along	the	rows.	
2. If	your	number	was	odd	write	your	name	on	a	piece	of	paper.
3. Pass	that	piece	of	paper	to	a	neighbour.
4. Pass	the	paper	to	someone	other	than	the	person	who	gave	it	to	you.
5. Pass	the	paper	to	someone	whose	number	was	even.
6. If	you	have	more	than	one	piece	of	paper	pass	the	extras	to	someone	

else	whose	number	is	even.
7. If	you	have	a	piece	of	paper	add	your	name	to	it.
8. Pass	the	papers	to	Bianca.
9. Welcome	to	your	new	project	groups.



Logistics

• Reviews	are	due	Monday
• Project	2	will	be	assigned	Monday



Massive	Parallelism	in	
Biology



2

n
bacteria after n 20 min periods.

n = 72 in one day.

>> 2^72
ans =   4.7224e+21

Some bacteria divide every 20 minutes

(under laboratory conditions)



https://www.youtube.com/watch?v=plVk4NVIUh8
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Some bacteria divide every 20 mins

>> 2^(72*365)

ans =   Inf

2

n
bacteria after n 20 min periods.

n = 72⇥ 365 in one year.

Atoms in the observable universe: 10

79
to 10

81.



Some bacteria divide every 20 mins

>> 2^(72*365)

ans =   Inf

2

n
bacteria after n 20 min periods.

n = 72⇥ 365 in one year.

Atoms in the observable universe: 10

79
to 10

81.

Life originated some 3.5⇥ 10

9
years ago.



>>	10^9

ans =			1.0000e+09
>>	10^9*365*72

ans =			2.6280e+13

⇡ 2

1000000000000
evolutionary trials.

This of course ignores a number

of factors such as the rate at which

division fails to occur, lack of resources, etc
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This of course ignores a number

of factors such as the rate at which

division fails to occur, lack of resources, etc

... let’s be more pessimistic.

Instead of doubling let’s only allow the population to increase

by one in ten thousand per year.

Now the predicted number of evolutionary samples is 2.94⇥ 10

151995.



Crossover
Horizontal	gene	flow	in	
bacteria

Transduction	by	viruses
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Crossover
Horizontal	gene	flow	in	
bacteria

Conjugation

Transduction	by	viruses
Transformation	(DNA	uptake)



Crossover
(Parental)
In	mammals:	

Adults	are	diploid	
(Paired	
chromosomes).
46	in	humans

Gametes	are	haploid	
(Unpaired).
26	in	humans



Meiosis	– Generates	Gametes

• Gametes	are	sperm	in	males	and	eggs	in	females

• The	gametes	are	generated	by	recombination	of	the	chromosomes	
received	from	the	organisms	parents.

• Once	a	gamete	from	each	parent	meets	a	new	organism	is	formed	
(using	the	recombined	DNA	from	their	parents	– really	the	4	
grandparents).



Crossover
(Meiosis)



Meiosis
(Parental)

McGraw-Hill
2

n
possible chromosome alignments, for n chromosomes.

In humans there are 2

26
= 67, 108, 864 possible combinations.



Meiosis
(Parental)

McGraw-Hill

2

n
possible chromosome alignments, for n chromosomes.

In humans there are 2

26
= 67, 108, 864 possible combinations.
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Crossover
(Parental)

McGraw-Hill



Explore	vs	Exploit	Trade-off

• Very	common	in	optimisation	problems

• K-armed	bandit	
• Resource	collection	(when	should	ants	collect	from	a	known	seed	pile	
vs	look	for	new	ones)

• When	should	you	look	for	a	new	job	vs	stick	with	the	one	you	have.
• When	should	you	try	a	new	restaurant	vs	going	to	a	known	one.
• GAs	have	to	make	this	trade-off	in	exploring	local	maxima	vs	looking	
for	potentially	higher	fitness	scores.



Crossover

• GAs	have	to	make	this	trade-off	in	exploring	local	maxima	vs	looking	
for	potentially	higher	fitness	scores.

• Increasing	the	mutation	rate	increases	exploration.

• Increasing	crossover	rates	increases	exploitation	of	known	
information.

• A	harsher	selection	operator	also	increases	exploitation.



Crossover

• Adding	a	crossover	operator	drives	the	population	to	a	uniform	
distribution	of	the	current	high	fitness	genomes.	(Maximises	the	
entropy	of	the	population	given	the	current	collected	data).

• Crossover	drives	the	current	population	to	thoroughly	sample	near	
known	maxima	at	the	expense	of	exploring	new	areas.

• Preserves	useful	information	across	the	population	so	it	is	less	likely	
to	be	lost	through	mutation	(increases	the	entropy	over	the	
population	of	discovered	genomes).



Crossover	and	Ergodicity

• Ideally	a	GA	will	be	able	to	reach	every	point	in	the	search	space	
independent	of	the	starting	population	given	enough	time.

• i.e.	We	want	the	GA	to	be	ergodic	(recall	the	definition	from	
dynamical	systems).

• Crossover	alone	is	not	ergodic	(cannot	explore	the	whole	space).	



Complete GA:

1. Reproduction (selection)

2. Crossover

3. Mutation



Implementing	“Digital	Sex”

1. Select two genomes, A,B in the population

2. Choose a position in the genome, p

3. Swap the genomes in each individual at point, p

A = A1, A2, A3, A4, A5

B = B1, B2, B3, B4, B5

after crossover with p = 2

A = A1, A2, B3, B4, B5

B = B1, B2, A3, A4, A5
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This	is	1-point	crossover
Imagine	what	n-point	crossover
would	look	like.

Locality	is	important…	
exploits	current	knowledge.



Implementing	“Digital	Sex”

1. Select two genomes, A,B in the population

2. Choose a probability, p

3. Swap the genomes in each individual at each point with probability, p

A = A1, A2, A3, A4, A5

B = B1, B2, B3, B4, B5

possible crossover with p = 0.5

A = B1, A2, A3, B4, A5

B = A1, B2, B3, A4, B5

This	is	uniform	crossover.
Locality	does	not	matter.
Less	information	preserving
so	more	exploratory.


